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Final report for NASA grant NAGW-2497
“Development of POINTS as a Planetology Instrument”

NASA support of the POINTS project has ended. This report discusses and points to the results
of the final phases of our work.

Most recently, the PI presented an invited paper, “POINTS Mission Studies: Lessons for SIM,” at
the conference “Planets Beyond the Solar System and the Next Generation of Space Missions™ 16-
18 October 1996, at the Space Telescope Science Institute. Our paper has been accepted for the
proceedings. A copy is appended.

Some of the POINTS work that was nearly finished but not documented at the time that we
stopped working on POINTS as a NASA project was the basis for a small project we did for JPL,
“Aspects of the POINTS design.” The final report to JPL, with copies to several interested
people at Code-S, contains four POINTS Technical Memoranda on subjects JPL considered to be
applicable to SIM. A few additional copies of this report (of about 150 pages) are available on
request.

Additional papers on POINTS (and the related Newcomb instrument), not referenced in our
previous reports, include:

R.D. Reasenberg, R.W. Babcock, M.C. Noecker, and J.D. Phillips, "POINTS: The Precision Optical
INTerferometer in Space, Remote Sensing Reviews (Special Issue Highlighting the Innovative Research
Program of NASA/OSSA), Guest Editor: Joseph Alexander, Vol. 8, pp 69-99, Harwood Academic
Publishers, 1993. (Invited)

R.D. Reasenberg, R.W. Babcock, M.A. Murison, M.C. Noecker, J.D. Phillips, B.L. Schumaker, and J.S.
Ulvestad, "POINTS: an astrometric spacecraft with multifarious applications," in The Proceedings of the
SPIE Conference # 2200 on Space Interferometry, (Kona, HI, USA, 13-18 March 1994), Vol. 2200, p. 2,
1994. (Invited)

R.D. Reasenberg, R.W. Babcock, M.A. Murison, M.C. Noecker, J.D. Phillips and B.L. Schumaker
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2477, p. 209, 1995.
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1995.
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POINTS Mission Studies: Lessons for SIM

Robert D. Reasenberg, Robert W. Babcock, John F. Chandler,
and James D. Phillips

Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for
Astrophysics, 60 Garden Street, Cambridge, MA 02138

Abstract: POINTS (Precision Optical INTerferometer in Space) measures the
angle between two widely: separated stars. The nominal bright-star measurement
accuracy of 2 microarcsec is achieved in two minutes of observing two mag 8
stars. POINTS comprises a metrology system and a pair of independent
Michelson stellar interferometers, each with a pair of 35 cm subapertures and a
2 m baseline. The angle between the baselines is adjustable over the range 87 to
93 deg. The POINTS. scientific mission is enhanced by a solar shield, which
allows observation of stars as close as 10 deg from the Sun. Numerous mission
simulations over the past 15 years have elucidated the consequences of the single
measurement accuracy and instrument architecture.

For simplicity and efficiency, we divide the target stars into two classes,
"reference grid stars" and all others. Grid stars provide reference for other
targets, and are also science targets. In the nominal mission, redundant grid-star
observations are performed quarterly to determine the stars' positions, proper
motions, and parallaxes. We showed more than a decade ago that, if the grid
stars; are .observed with sufficient redundancy, the grid "locks up:" after the
observations are combined in a weighted least squares estimate of star positions,
proper motions, and parallaxes, the uncertainty in the angle between any pair of
grid stars, whether directly observable or not, becomes comparable with the
measurement uncertainty.

We have used double-blind Monte-Carlo mission simulations to study the
planet-finding capabilities of POINTS and tc determine the reliable detection
threshold with a nominal observing program. If we demand a negligible
probability of false alarms, then with our standard observing schedule, the
detection threshold for short-period planets is a signature with amplitude equal
to the single-measurement-observing precision, and orbital elements can usually
be determined. For planets with periods longer than the mission, the threshold
rises steeply with period.

These studies of the POINTS mission yield seven lessons for the Space
Interferometry Mission (SIM), which are discussed.

Introduction

The POINTS (Precision Optical INTerferometer in Space) project started as a casual
investigation in 1978 based on a concept originally suggested to NASA in 1976 by Irwin
Shapiro (1978). It proceeded at a low level for many years until modest funding was
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obtained during the 1980s. Because global microarcsecond astrometry rests upon
several terrae incognitae, the corresponding investigations had to be approached ab
initio. Amongthese was a reference frame suitable for microarcsecond measurements.
The traditional approach to a reference frame, which is central to astrometry, is to use
stable objects in a local field. The POINTS-global approach is to build a "reference grid
of stars” through frequent redundant intra-grid observations, and connect the grid to a
stable reference such as the quasars. We demonstrated the phenomenon of grid lock-up
and the associated instrument-parameter estimation:in 1980-81. This formed an essential
part of the mission’s foundation. In the early 1990's, when we investigated a much
simplified astrometric interferometer, Newcomb, finding a way of locking up the grid
was among the first and :most important of our investigations (Reasenberg et al. 1993).
Both the POINTS and Newcomb studies:showed that good sky coverage is essential to
grid lockup.

During the 1990's, we investigated the ability of POINTS to detect planets around
the grid stars. We know of no way to do this reliably except by the kinds of simulations
we describe below. These studies confirmed our earlier hope that grid stars could
function as reference objects, even when many have substantial motion due to unseen
companions. They also led:to the realization that the mission’s sensitivity to the
discovery of planets around distant stars falls sharply with planetary period when that
period is longer than about 3/4 of the mission length. This phenomenon places a
premium on mission longevity and thus mandates high reliability design.

In Section 2, we discuss the architecture and some mission characteristics of
POINTS and Newcomb. We introduce the grid-lockup phenomenon and its breakdown
at Sun-exclusion angles of about 90 deg. Section: 3 contains the motivation and
description of the double-blind simulations of the POINTS planet-finding effort. It is
shown that, with a nominal observing schedule, the detection threshold for short-period
planets is a signature about equal to the single-measurement accuracy. A simplified
system for simulating the detection of planets is: introduced in Section 4, where we
discuss its calibration against the more labor-intensive approach of Section 3. The work
described in Section 4 is reduced in Section 5 to a simple relationship among
measurement accuracy, mission length, and target characteristics for 50% probability of
detection. Finally, in Section 6, the results are summarized with accent on those most
applicable to SIM. Many of the subjects discussed herein are elaborated further in a
forthcoming paper by Babcock et al. (1997).

2. The POINTS and Newcomb Interferometers, Instrument and Mission
Characteristics

POINTS (Reasenberg et al. 1988, 1993, 1995) measures the angie between two widely
separated stars. it comprises a metrology system and a pair of independent Michelson
stellar interferometers, each with a pair of 35 cm subapertures and a 2 m baseline. The
angle between the baselines is adjustable over the range 87 to 93 deg. The wide
separation between simultaneously observed stars makes POINTS a global astrometric
instrument and provides three key advantages: (1) reference stars can be anywhere in a
6 x 360 deg band (5% of the sky). Such a band may be expected to include about 80
stars as bright as visual mag 5 and 2000 stars as bright as mag 8. Integration time is not
prolonged by the need to use the faint reference stars that would be expected in a small
field. (2) Measurements over the entire sky allow recalibration and bias estimation
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through 360 deg closure over a time scale of hours for an agile spacecraft free of severe
pointing restrictions. (3) Parallax determinations are absolute. There is no need to use
"zero parallax objects" which, given the measurement accuracy, would be extragalactic
and thus faint. A mission might use 300 grid stars for redundancy since some stars may
eventually be shown to have properties that make them unsuitable for precision
astrometry. For the grid stars (mag<8), POINTS would make about 360 measurements
per day and complete a set of grid measurements .in 4.2 days. For fainter objects,
measurements would take longer or have greater error. The limiting magnitude, which
is set by sky background, is 14 without a spectrometer slit or 18 with one.

For thermal stability and observational flexibility, the spacecraft is permanently
shaded from the Sun by a shield that also supports-a solar power array. The shield sees
continuous sunlight except for seasonal:eclipses of up to two hours duration. A shield
of 4.8 m diameter held 4.35 m from the center of the spacecraft would allow observation
of stars as close to the Sun as 10 deg. However, near-Sun observations are not critical
for planet finding and might pose a hazard to the detectors in the event of a pointing-
system failure. Therefore, all simulations were done with a simple 30 deg Sun-exclusion
angle.

For simplicity and efficiency, we divide the target stars into two classes, "reference
grid stars" and all others. Grid stars provide reference for other (generally less
frequently observed) targets, and are also science targets. Our observing strategy begins
with the selection of a set of stars for the reference grid. Grid stars should be bright to
minimize acquisition: and integration time. We have shown that a grid of stars, with
none known to be in a multi-star system, can be selected from nearby stars (within
22 pc) of mag 8 or brighter.

In the nominal mission, a redundant set of grid star observations is performed
quarterly to determine each star’s.five astrometric parameters: (2) positions, (2) proper
motions, and (1) parallax. If the grid stars are observed with sufficient redundancy, the
grid "locks up;" after the observations are combined in a weighted-least-squares estimate
of the astrometric parameters of each star, the uncertainty in the angle between any grid
pair, whether directly observable or not, becomes of the order of the measurement
uncertainty (Chandler & Reasenberg 1990). Grid behavior is largely characterized by
a single parameter M, the ratio of the total number of observations that are possible
(ignoring obscuration) to the number of grid stars. The grid locks for A/ >3.5, and with
increasing M the mean inter-star angle uncertainty decreases at a rate that changes from
1/M to I/W as M increases from ~5 to ~20. At M=4.2, the modal uncertainty in star
pair separation is equal to the single-measurement uncertainty. An overall rotational
degeneracy remains, which can only be broken by ties to an inertial reference frame.
Quasars are the obvious source for a frame tie; stellar aberration provides a weaker tie
to the Earth's orbit.

POINTS is expected to be able to make about 360 measurements per day of targets
as bright as the grid stars, so the 1500 quarterly grid measurements can be completed in
4.2 days. The remaining time would be used for observing other targets against the grid,
either planet candidates, quasars for the frame tie, or targets of astrophysical interest
(Reasenberg 1984, Reasenberg et al. 1988, Working Papers 1991, Peterson et al. 1996).
The nominal mission lasts for 10 years; all designs (and cost estimates) were based on
that nominal life. After 10 years of quarterly 2 microarcsecond (uas) observations with
M=S5, grid star position, parallax, and annual proper motion are determined on average
to 0.24, 0.16, and 0.08 pas respectively (Reasenberg and Shapiro 1986, Reasenberg
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1993).

The accuracy of a single measurement is limited by the number of collected photons
and by systematic errors. For our simulations, we use the nominal POINTS accuracy
of 2 pas (Reasenberg 1996). Uncertainties and sensitivities derived from the simulations
are proportional to this single-measurement accuracy. Control of systematic error is
crucial; the entire- Z pas error budget would be consumed by an uncorrected 20
picometer (pm) change in:the optical path difference (OPD) between the two sides of
one interferometer caused, for example, by displacement of a primary mirror. This
subject has been discussed extensively. (See Noecker 1995 and references therein.)

Newcomb We briefly consider Newcomb, which is a smaller, simplified variant of
POINTS. Newcomb comprises five interferometers stacked one above the other. Each
interferometer's:baseline and optical axis is parallel to the instrument's principal plane.
The second, third, and fourth axes are separated from the first by fixed observation
angles 0f 40.91, 60.51, and 70.77 deg. The fifth axis is redundant, parallel to the first.
The baseline length is 35 cm and the aperture is 5 cm. Each interferometer detects a
dispersed fringe (channeled spectrum), which falls on a short CCD detector array. The
optical passband is from 0.9 to 0.3 microns.

To reduce cost, we replaced the POINTS-type articulation with a £0.35 deg field
of view made possible by moving the beamsplitter assembly along the baseline direction.
With this field of view, building a POINTS-type grid with randomly placed stars would
require about 8000 measurements per: (quarterly) observation series of 1600 stars. With
the nominal observation time of five minutes (plus:slew time), this would be
unacceptably slow: too much of the observing time would ‘be consumed measuring the
grid, and closure information would be exfracted too slowly. Instead, we chose to
designate: 180 berths in a systematic array on the sky, and showed that this pattern could
be placed suchrthat a large fraction of'the berths would contain bright stars. Each berth
is a circular patch of sky of 0.35 deg radius in which we hope to have a grid star. To
construct the array of berths, we start with the 60 points that are vertices of the regular
truncated icosahedron. The observation angles listed above are inter-vertex angles such
that for each vertex there are four other vertices at each chosen angle. (There is no angle
offering higher multiplicity.) To the original set of 60 points, we add two additional
such sets by rotating the figure £20.82 deg.

With a grid of stars filling all 180 berths, we showed POINTS-like grid lockup even
with large Sun-exclusion angles. In the covariance studies, we assumed nine quarterly
observation series and five bias parameters per series per observation angle; we
estimated all five astrometric parameters for each star. In an extension of the study, we
eliminated stars at random from the set and found that there was stable behavior with as
few as half the stars in the grid. Further, reducing from 180 stars in the grid to 120
increased the statistical uncertainty of star position by only 31% due to degeneracy (i.e.,
with constant number of observations).

With the above as background, we can address the result of a study of the effect of
the Sun-exclusion angle on lockup. Figure 1 shows that the uncertainty in grid star
positions increases slowly with the Sun-exclusion angle until 90 deg, beyond which
angle stars near the ecliptic poles are never observable and the grid starts to unlock. The
results shown are for a study that started with 120 of 180 berths filled before applying
the Sun-exclusion constraint, but other studies show that a complete grid manifests
similar behavior, as do POINTS grids. We conclude that, for the timely production of
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Figure 1 Angular uncertainty vs. Sun-exclusion angle for
Newcomb. The abscissa is the minimum permissible angle
between an observed star and the Sun. For the dashed curve, the
observations lost due to the glare-angle constraint are replaced by
permissible observations. (Reproduced from Phillips et al. 1995.)

a robust grid, the Sun-exclusion angle should be well under 90 deg.
3. Double-blind Simulations of a Planet-Finding Mission

In a classical astrometric study, there is a target star and a set of reference stars that
are normally expected to be more stable than the target. This description applies to
POINTS non-grid targets. For POINTS grid stars, the situation is different: there is no
distinction between target and reference stars. Further, in our studies we assume that all
of the grid stars are likely to have planets. Thus, simulations were needed to show that
the grid-star data could be disentangled and to determine the planet detection threshold,
the ability to estimate orbital parameters; and the robusiness against false alarms. For
any global astrometric instrument operating with sufficient accuracy to detect remote
planets, there will be a similar need.

Planets orbiting non-grid stars are conceptually easier to detect and characterize
because the reference star positions are well known from the grid analysis. Eventually,
an optimal estimator would use all available data and the distinction between grid and
non-grid stars would be blurred. This approach would be appropriate, for example, at
the end of the mission when the problem is linear, the parameter set is fixed, and the
need is to make the final adjustments to the parameters. However, it would be an
unnecessary complication early in the mission.

Here we describe the techniques that we developed over the past several years to
simulate mission data and to investigate the suitability of such data to identify and
characterize planets around: stars. ‘An: unsurprising result from our early simulations is
that knowing which stars have planets makes it easier to find them. We therefore
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adopted a "double-blind" approach to our simulations. The techniques are labor
intensive because they address a nonlinear system identification and estimation problem
near the noise threshold; practiced judgement is required and automation of the process
was considered infeasible during the study. In the next section, we describe a simplified
method that we have shown to approximate the behavior of complete simulations, and
that requires considerably less human effort to yield results.

The double-blind simuiations have three stages: create a fictitious universe that
includes a set of randomly generated planets, which we will call the Monte Carlo
Realization (MCR), and a corresponding set of "pseudo data;" analyze the pseudo data
to yield the Estimated Model (EM) of the location and characteristics of the planets;
compare the EM with the MCR. If a simuiated analysis is completely successful, the
MCR and EM will have planets around the same stars, although the corresponding
planet orbits will differ slightly due to simulated measurement noise. However, the
process is iterative and, at intermediate iterations, the EM may miss some planets and
include some spurious ones; the estimated orbital elements may be far from correct.

In our simulations, we generated planets with random orbital semimajor axis,
eccentricity and mass or log(mass), all uniformly distributed over ranges appropriate for
testing instrument sensitivity. The orbital angles were generated to yield a uniform
distribution of orientations. We generally made the distribution of eccentricities uniform
over the range from 0 to 0.2, the range (although not the distribution) found for planets
in the solar system. Most:(but not'all} of ‘our simulations have been limited to at most
one planet per star. In the solar system, Jupiter dozzinates; the contribution from Saturn
would be hardly distinguishable from proper motion with observations over 10 years.
We typically allowed 20 to 50 planets in a single simulation, all orbiting the 100 grid
stars. (A single simulation with 90 massive planets, modeling only circular orbits to
limit the number of adjustable parameters, successfully detected every planet. All other
simulations had under =50 planets.)

Qur software generated pseudo data comprising periodic (quarterly in these studies)
sets of measurements of angles between grid stars, corrupted by white zero-mean
Gaussian measurement noise with 2 ‘nas standard deviation. Simulated data were
analyzed in the same way that mission data would be analyzed, except that for the latter,
it would be necessary to "condition" the data, i.e., to apply corrections derived from
spacecraft auxiliary and engineering data and to identify and delete "defective"
observations. The model used in our simulations includes star positions, parallaxes, and
proper motions; the Earth orbit (needed for parallax, assumed known, and represented
by elliptical elements); instrument bias parameters; and perturbations by exoplanets.

All simulations in this section used a double-blind protocol based on Monte Carlo
techniques: a colleague (JFC) of the analyst (RWB) would prepare an auxiliary dataset
with the seed for the random number generator and with ranges for the allowed mass,
radius, eccentricity, and number of planets. The Monte Carlo software would generate
the realization but not disclose it. The software would also generate pseudo data and
make these available to the analyst. The analyst would then perform a series of
numerical experiments with the data until he felt that he had identified all the planets that
could be detected reliably. At that time, he would enable the printing of the actual planet
parameters for comparison.

Seven double-blind simulations were run of ten-year missions with quarterly
observation series at A/=5. In these simulations, 205 of 236 planets were detected and
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Figure 2. Detection probability from seven double-blind
simulations. Numbers over the histogram are the total number
of planets generated in each bin. Three undetected planets are
off scale to the left.

there were no false alarms. The procedure is robust with the decision-making rules used
by the analyst; of the 31 planets not detected, 28 were below the detection threshold
established by the study. Results of this phase of the investigation are summarized in
Fig. 2 by a histogram of the probability of detection as a function of signature. Here we
introduce the "Jove" as a unit of astrometric signature equal to that induced by Jupiter
around the Sun as viewed from 10 pc, =500 pas amplitude.

In some cases, planets couid be detected but orbits could not be fully determined:
either the eccentricity did not converge to a physical value or the orbit radius grew
without bound on successive iterations. In these cases, the analyst would first constrain
the model orbit to be circular. If the candidate remained troublesome, the semi-major
axis could be constrained to the value determined by the candidate-identification
algorithm. The analyst would attempt to lift these constraints as the simulation
approached completion, but some orbits continued to require constraints. Almost all of
the problem orbits had periods of 8 or more years combined with either edge-on
observing geometry or initial parameter guesses too far from correct to allow
convergence in a linear estimator. With the nominal observing schedule, the probability
of detection is high for signatures at least as large as 0.004 Jove, which happens to be
the single-measurement precision, and drops rapidly for smaller signatures. In reporting
results of such simulations, it is important to distinguish between detection and
determination of planetary orbits.

False alarms Another important consideration is the demand for reliable detections.
One can conveniently express confidence limits in terms of the corresponding number
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of (single parameter) standard deviations. For a planet search, one looks at a large
number of possible "detection events," 7 = (number of stars) x (number of independent
planetary periods considered) X (two phases for each period). If we wish the experiment
as a whole to have a reliability corresponding to 4 standard deviations, then the
detection threshold for each event must be set to B standard deviations, where the
following approximation (see Appendix) may be used for 4 > 2:

B = 4% + 2 log I @D

For our study, which was done conservatively, /= 7x100x20x2 = 28,000 and we assume
A=3. Thus, we obtain B~5.43; "three sigma" mission reliability requires five+ sigma
detection of individual signatures. This does not address the deviation of real noise from
Gaussian (the tails are always thick) or noise correlations, as would be expected from
some types of astrophysical noise (starspots) and from some of the instrumental errors
other than the dominant starlight photon counting statistics’. Note that for a mission
with 100 (10,000) targets, 7=4000 (400,000), and Eq. 1 yields B= 5.1 (5.9) for 4 = 3.

For the series of seven double-blind simulations, the detection threshold was found
a posteriori to have been 6.90. This (excessively) high value, which by Eq. 1
corresponds to 4 = 5.2, is related to the three planets in the simulation that should have
been detected but were not. It is also consistent with there having been no false alarms
in a study of 700 stars. Had resources permitted, we would have done additional
simulations with a more aggressive threshold. Any serious discussion of the threshold
for the detection of remote planets by a proposed technique should be for the case of a
low to negligible level of false alarms.

4. A Simplified System for Planet-Finding Simulations

The simulations described in the previous section have shown that a POINTS mission
could find a class of planets, if they exist, and do so without excess false alarms.
However, these simulations are time consuming, so it is hard to generate good statistics.
In early 1994, while we were doing the simulations, one of us (RWB) hypothesized that
the following two statements were nearly the same: (1) Using a standard observing
sequence, a planet around the observed star would be detected and its orbital elements
could be determined; and (2) Starting near the correct answer, an iterated weighted-least-
squares . estimator seeking only the orbital elements and mass of the planet and the
astrometric parameters of its star would converge. We anticipated that, depending on
the details of the algorithms associated with the two statements (for example, the number
of reference stars used), a scale factor might need to be applied to one of the planet

! Note also that the problem is being treated as one-dimensional, i.e., this is the
statistics of planet mass. Properly, one should look at the mapping of the noise onto
the phase space of orbital elements, and determine the volume of that space in which
noise would be interpreted as a planet. For example, false planets of negative mass
(but opposite phase) should arise from noise as often as those of positive mass,
resulting in a factor two more false detections. This would increase the required
detection threshold only a tiny amount, however, because of the exponential nature
of the Gaussian distribution.
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signatures. With reasonable algorithms, we expect the scale factor to be of order unity.
At the PBSS meeting, one of us (RDR) learned that the same hypothesis (Casertano
1996) had been independently developed and used as the basis for the paper by Lattanzi
et al. (1997).

Here we discuss an implementation of the above hypothesis, an automated scheme
that considers only a single target and its reference stars. We used the more labor
intensive mission simulations described in the previous section to provide "ground
truth," and found that the simplified system could be calibrated to provide a good
approximation to the full simulation. In this section, we describe the simplified system
and examine its behavior in the regime where detection probability is falling from near
one to near zero. This leads, in Section 5, to a parametric description of POINTS planet-
detection capabiiities.

In the simplified simulations, seven solar-mass stars were spaced equally around the
equator and an eighth was placed near the pole. In the model, all eight stars were mag
8 and at 10 pc; a single planet with random initial conditions orbited the pole star. The
planetary system is observed against seven reference stars rather than the average of ten
in the full simulations, but the reference stars are equally spaced so chance alignments
cannot make one coordinate poorly determined. Quarterly observations were simulated
for a 10 year mission.

Starting from the MCR parameter values, which would be right answers absent the
effect of the simulated measurement noise, the solutions were iterated up to ten times;
the iterations were terminated if convergence was detected or if unphysical elements or
divergence were encountered. The adjustable parameters were the mass and orbital
elements for the planet and the five astrometzic parameters of the pole star. (The star
mass was assumed known.) System: parameters and solution status (converged or failed)
were tabulated for statistical analysis. The parameters that were found to most strongly
affect convergence are, not surprisingly, signature amplitude and period. Planet mass
and orbital radius are closely coupled to these.

An attempt was made to duplicate the double-blind simulations using the eight-star
system. A series of 10-year simulations was made with planet parameters and masses
of the polar star varied to match the distributions used in the combined double-blind
simulations. The points in Fig. 3 are convergence probabilities in the eight-star system
after the application of a calibration factor discussed below. The horizontal error bars
represent the binning width, which was chosen to match that used for the full
simulations. It is the shaded portion of the histogram in Fig. 2 that should be compared
with results in the eight-star system.

A convenient measure of sensitivity is Ss,(P,?), the signature needed to give a 50%
chance of detecting and characterizing a planet with orbital period P in a mission of
length ¢ with the nominal observing sequence. Two effects increase Ss, determined
automatically in the eight-star system over that determined by an analyst in the nominal
M=5 POINTS reference grid. (1) The pole star is observed against seven reference stars;
on average, ten reference stars are available in the nominal grid. (2) Near the sensitivity
limit, the best-fit orbital elements may differ significantly from the true elements due to
measurement noise. Thus, a solution starting from the correct noise-free elements can
be outside the linear regime, and thus may diverge. In manual solutions, the initial
elements are derived from the noise-corrupted data, and the analyst has the option of
fixing selected orbital elements while attempting to bring the remaining elements into
the linear regime, so it is possisle to recover from divergences caused by poor starting
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Figure 3. Detection probability from double-blind simulations
(histogram) compared with that from the simplified eight-star
simulations (points). Double-blind data are those from Fig. 2
having periods of 8 years and less, matching the period
distribution used in the eight-star simulations. In performing the
eight-star simulations, we attempted to maich the star and planet
parameters of the full simulation. The points shown are
calibrated (shifted in signature) to match the shaded histogram.
Vertical error bars are statistical (binomial distribution) and
horizontal bars represent binning width.

values. A scale factor of 0.7 was applied to the signatures in the eight-star system to
align the points in Fig. 2 with the probability of determining orbital elements found from
the double-blind simulations.

5. Mission Length Considerations

We hypothesize that, for a given distribution of eccentricities, Ss, should have the
form

S (P,t) = [N, INtf(tIP) (0,/2 pas) o))

where the function f{#/P) could be determined empirically in the simple eight-star system
by running simulations with a wide range of signatures. In the equation, N, is the number
of observations per unit time with the nominal observing schedule, N is the actual
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Figure 4. Empirical fit to the signature for SG% detection
probability vs. period. The points are taken from three
simulation series, collectively including 300,000 cases. The
solid line is a fit to an RSS of a power law and a constant, see

Eq. (3).

number of observations per unit time, and o, is the single measurement precision. The \/l_/;
dependerice comes from the increase in the number of measurements with time (ignoring
the discretization of quarterly observation cycles).

We performed three series of simulations, each with 100,000 cases. For these, the
planet orbital periods spanned 2-12, 2-30, and 2-45 years, and e was uniformly
distributed from 0 to 0.2. The corresponding maximum astrometric signatures were
0.02, 0.4, and 4.0 Jove, respectively. From contour plots of the convergence probability
as a function of period and signature, we found period-signature pairs for a convergence
probability of 50%. In Fig. 4, these points are shown with the correction factor of 0.7
applied. The asymptotic behavior of these points appeared linear (on a log-log plot) for
both small and large periods, which gave rise to this form for f{z/P)

Sy = 10/t NN A% +[BPIHC)? (0,/2 uas) Joves ®3)

Using these points, we fit the free parameters of Eq. (3) to obtain 4=0.0036, B=0.0069,
and C=4.35. The A and B terms in S, are equal at P=0.86r; sensitivity is highest when
more than a full orbit is observed and falls rapidly for periods longer than the
observation span. The t-dependence of Eq. (3) was confirmed by a selection of
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simulated missions with durations from 2 to 20 years.

Figure 5 shows S;, based on Eq. 3, scaled to mission lengths ranging from 2 to 20
years. However, the assumption of continuous observations is questionable for the
shorter missions in this range. Perhaps more interesting than the detectable signature is
the detectable mass. The signature in Joves due to a planet of mass M, and semi-major
axis a orbiting a solar-mass star a distance d from Earth is

5= a 10pc
M,a, d
M, P23 10pc
M, 52 d

“)

where a, is Jupiter's semi-major axis, approximately 5.2 AU. Mass contours are
included in Fig. 5 as an aid in interpreting the meaning of signature and period. It is
apparent from the figure that long mission life is central to the successful detection of
a variety of planets. The need for long life is even more important when one attempts
to detect multiple planets, particularly when there is "frequency crowding."

6. Conclusion

Global microarcsecond astrometry, which must be done from outside Earth’s
atmosphere, has aspects unlike its ground-based or narrow-field counterparts. In
particular, the reference frame can advantageously be constructed by highly redundant
observations among a small group of bright "grid" stars. When the grid is rigid, it can
be tied to a set of distant stable objects, with quasars as prime candidates. That set can
be (but need not be) small, since the positional information is well transferred around the
sky. Necessarily, one must study the possibility that the reference objects will
themselves have significant motion (of their centers of light). We have investigated
aspects of the reference frame, demonstrating grid lock-up and the analysis of the data
set for planets. In the process, we have developed a methodology that can be applied to
any pointed global astrometric mission. The methodology involved a series of
simulations to investigate the detection of planets. Some aspects of this work are
specific to POINTS. However, much of it is directly applicable to SIM. Below, we
summarize the latter aspects as a series of lessons:

1. For the timely production of a robust grid, the Sun-exclusion angle should be well
under 90 deg.

2. For any global astrometric instrument operating with sufficient accuracy to detect
remote planets, it will be necessary to demonstrate how and whether it will be possible
to disentangle the data. This will be especially important if a large fraction of the stars
have planets.

3. Our simulations show that stars with companions or potentially having companions
may serve as reference grid stars. When half of the stars each have a single significant
planet, there is little loss to the astrometric value of the grid. This has only been shown
in the POINTS case, with low Sun-exclusion angle, good temporal coverage, high
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redundancy of the grid observations, a wide angle between the observed stars, and an
agile spacecraft.

4. An unsurprising result from our early simulations is that, in a mission simulation with
manual intervention, knowing which stars have planets makes it easier to find them. A
"double-blind" approach to simulation is the only method we know to obtain a reliable
value for the detection threshold. (The same software can eventually be used to train the
people who will work:with the real data.)

5. In reporting results of a mission simulation, it is important to distinguish between
detecting a planet and determining its mass and orbital elements. Beyond that is the
question of the accuracy with which those parameters are determined. Further, any
serious discussion of the threshold for the detection of remote planets by a proposed
technique should be for the case of a low to negligible level of false alarms, and that
level should be estimated and included in the discussion.

6. A substantial savings in computation time can be had by examining convergence of
the iterated solution, rather than performing a complete analysis of simulated missions.
However, the complete analysis is required to establish the reliability and scaling of the
results from the "convergence test" approach.

7. The range of planets that can be detected is highly sensitive to the length of the
mission. A premium should be placed both on the instrument’s long-term reliability and
on having at least the option of a low-cost operations mode, suitable for an extended
mission.
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Appendix. Detection threshold when searching for rare events.

Introduction. There is a class of experiments whose object is to look for a rare
event by repeatedly making a measurement, i.e., looking in multiple "channels."
Traditionally, a serious problem for such experiments is false alarms. A "30 event" may
be rare, but if 10,000 measurements are made, one expects to see about 13 of them under
the assumption that the errors are Gaussian. A further complication comes from the non-
Gaussian noise found empirically to corrupt many experiments. This latter complication
is not addressed here.

In this Appendix, we consider the question: At what level must we set the detection
threshold for the individual measurements in order that the experiment have the required
reliability? The answer to this question need not be very precise. Experimental
uncertainties are often not known to better than 10%.

Analysis. Let x be a measured quantity which has a zero-mean Gaussian distribution
with standard deviation 0. Let P(B) be the probability that x is greater than Bo for a
given measurement in which the sought-after rare event is absent. We assume that this
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probability is small. If there are N measurements, then the probability that x > Bo in at
least one of them is

N-1

PB) =1-[1-PBY =~ NP(B)[I— —2~P(B) + o (5)

To an excellent approximation, we are free to keep just the first term of the series since
we are considering reliable experiments for which NP(B) is small.

It is convenient to talk about an experiment in terms of confidence limits, whlch are
often translated to the number of standard deviations from the mean that a result
represents. When this terminology is used, a single-parameter Gaussian distribution is
implicit. We may determine 4, the number of standard deviations that characterizes the
entire experiment, according to

P(4) = P(B) =~ NP(B) . ©)
For a Gaussian probability density function, the cumulative probability function
P(4) has an approximation for large A
PU) = —— e (1-472+..) o
A2n
(Gautschi 1968). By combining Eqs. (6) and (7), and dropping small terms, we obtain
1-B7
1-47

We can obtain a first approximation to the solution to Eq. (8), adequate for most
purposes when 4 is not small, by neglecting the terms on the right containing B:

B%= 42+2log N +2 loge(%) + 2log, ®)

A2+2mN ®

For example, in an experiment with 10,000 measurements, a "30 result” requires a
single-event significance of 5.20.
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